Search :
Sign in or Register  
Welcome Sign in or Don't have an account?Register

ETFB

This gene encodes electron-transfer-flavoprotein, beta polypeptide, which shuttles electrons between primary flavoprotein dehydrogenases involved in mitochondrial fatty acid and amino acid catabolism and the membrane-bound electron transfer flavoprotein ubiquinone oxidoreductase. The gene deficiencies have been implicated in type II glutaricaciduria. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2008]
Full Name
Electron Transfer Flavoprotein Beta Subunit
Research Area
Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase (PubMed:25416781, PubMed:15159392, PubMed:15975918).

It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (Probable). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism (PubMed:12815589, PubMed:7912128).

ETFB binds an AMP molecule that probably has a purely structural role (PubMed:8962055, PubMed:15159392, PubMed:15975918).
Biological Process
Fatty acid beta-oxidation using acyl-CoA dehydrogenase Source: UniProtKB
Cellular Location
Mitochondrion matrix
Involvement in disease
Glutaric aciduria 2B (GA2B):
An autosomal recessively inherited disorder of fatty acid, amino acid, and choline metabolism. It is characterized by multiple acyl-CoA dehydrogenase deficiencies resulting in large excretion not only of glutaric acid, but also of lactic, ethylmalonic, butyric, isobutyric, 2-methyl-butyric, and isovaleric acids.
PTM
Methylated. Trimethylation at Lys-200 and Lys-203 may negatively regulate the activity in electron transfer from acyl-CoA dehydrogenases.

Anti-ETFB antibodies

+ Filters
Loading...
Submit A Review Fig.3 Signaling pathways in cancers. (Creative Biolabs Authorized) Fig.4 Protocols troubleshootings & guides. (Creative Biolabs Authorized) Submit A Review Fig.3 Signaling pathways in cancers. (Creative Biolabs Authorized) Fig.4 Protocols troubleshootings & guides. (Creative Biolabs Authorized)
Target: ETFB
Host: Mouse
Specificity: Mouse, Rat, Human
Clone: CBFYE-1328
Application*: WB, IP, IF, E
Target: ETFB
Host: Mouse
Specificity: Human
Clone: CBFYE-1327
Application*: WB, IP, E
Target: ETFB
Host: Mouse
Specificity: Human
Clone: CBFYE-1326
Application*: WB, IC, P, C, E
More Infomation
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
IFImmunofluorescence
IHImmunohistochemistry
IPImmunoprecipitation
WBWestern Blot
EELISA
MMicroarray
CIChromatin Immunoprecipitation
FFlow Cytometry
FNFunction Assay
IDImmunodiffusion
RRadioimmunoassay
TCTissue Culture
GSGel Supershift
NNeutralization
BBlocking
AActivation
IInhibition
DDepletion
ESELISpot
DBDot Blot
MCMass Cytometry/CyTOF
CTCytotoxicity
SStimulation
AGAgonist
APApoptosis
IMImmunomicroscopy
BABioassay
CSCostimulation
EMElectron Microscopy
IEImmunoelectrophoresis
PAPeptide Array
ICImmunocytochemistry
PEPeptide ELISA
MDMeDIP
SHIn situ hybridization
IAEnzyme Immunoassay
SEsandwich ELISA
PLProximity Ligation Assay
ECELISA(Cap)
EDELISA(Det)
BIBioimaging
IOImmunoassay
LFLateral Flow Immunoassay
LALuminex Assay
CImmunohistochemistry-Frozen Sections
PImmunohistologyp-Paraffin Sections
ISIntracellular Staining for Flow Cytometry
MSElectrophoretic Mobility Shift Assay
RIRNA Binding Protein Immunoprecipitation (RIP)
Online Inquiry