COPE

COPE (Coatomer Protein Complex Subunit Epsilon) is a Protein Coding gene. Among its related pathways are Transport to the Golgi and subsequent modification and Metabolism of proteins. Gene Ontology (GO) annotations related to this gene include structural molecule activity.
Full Name
coatomer protein complex subunit epsilon
Function
The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. The coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins. In mammals, the coatomer can only be recruited by membranes associated with ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also influences the Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors (By similarity).
Biological Process
Endoplasmic reticulum to Golgi vesicle-mediated transport Source: GO_Central
Intra-Golgi vesicle-mediated transport Source: UniProtKB
Protein transport Source: UniProtKB-KW
Retrograde vesicle-mediated transport, Golgi to endoplasmic reticulum Source: Reactome
Cellular Location
Cytoplasm; Golgi apparatus membrane; COPI-coated vesicle membrane. The coatomer is cytoplasmic or polymerized on the cytoplasmic side of the Golgi, as well as on the vesicles/buds originating from it.
PTM
Phosphorylated by PKA.
Polyubiquitinated by RCHY1 in the presence of androgen, leading to proteasomal degradation.
View more

Anti-COPE antibodies

+ Filters
Loading...
Target: COPE
Host: Mouse
Antibody Isotype: IgG2a, κ
Specificity: Human, Mouse, Rat
Clone: BR139
Application*: WB, IP, IF, P, E
More Infomation
Submit A Review Fig.3 Signaling pathways in cancers. (Creative Biolabs Authorized) Fig.4 Protocols troubleshootings & guides. (Creative Biolabs Authorized) Submit A Review Fig.3 Signaling pathways in cancers. (Creative Biolabs Authorized) Fig.4 Protocols troubleshootings & guides. (Creative Biolabs Authorized)
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
  • AActivation
  • AGAgonist
  • APApoptosis
  • BBlocking
  • BABioassay
  • BIBioimaging
  • CImmunohistochemistry-Frozen Sections
  • CIChromatin Immunoprecipitation
  • CTCytotoxicity
  • CSCostimulation
  • DDepletion
  • DBDot Blot
  • EELISA
  • ECELISA(Cap)
  • EDELISA(Det)
  • ESELISpot
  • EMElectron Microscopy
  • FFlow Cytometry
  • FNFunction Assay
  • GSGel Supershift
  • IInhibition
  • IAEnzyme Immunoassay
  • ICImmunocytochemistry
  • IDImmunodiffusion
  • IEImmunoelectrophoresis
  • IFImmunofluorescence
  • IGImmunochromatography
  • IHImmunohistochemistry
  • IMImmunomicroscopy
  • IOImmunoassay
  • IPImmunoprecipitation
  • ISIntracellular Staining for Flow Cytometry
  • LALuminex Assay
  • LFLateral Flow Immunoassay
  • MMicroarray
  • MCMass Cytometry/CyTOF
  • MDMeDIP
  • MSElectrophoretic Mobility Shift Assay
  • NNeutralization
  • PImmunohistologyp-Paraffin Sections
  • PAPeptide Array
  • PEPeptide ELISA
  • PLProximity Ligation Assay
  • RRadioimmunoassay
  • SStimulation
  • SESandwich ELISA
  • SHIn situ hybridization
  • TCTissue Culture
  • WBWestern Blot
online inquiry
Online Inquiry
Happy Holidays
Happy Holidays close ad