Sign in or Register   Sign in or Register
  |  

HSD17B8

In mice, the Ke6 protein is a 17-beta-hydroxysteroid dehydrogenase that can regulate the concentration of biologically active estrogens and androgens. It is preferentially an oxidative enzyme and inactivates estradiol, testosterone, and dihydrotestosterone. However, the enzyme has some reductive activity and can synthesize estradiol from estrone. The protein encoded by this gene is similar to Ke6 and is a member of the short-chain dehydrogenase superfamily. An alternatively spliced transcript of this gene has been detected, but the full-length nature of this variant has not been determined. [provided by RefSeq]
Full Name
hydroxysteroid (17-beta) dehydrogenase 8
Function
Required for the solubility and assembly of the heterotetramer 3-ketoacyl-[acyl carrier protein] (ACP) reductase functional complex (KAR or KAR1) that forms part of the mitochondrial fatty acid synthase (mtFAS). Alpha-subunit of the KAR complex that acts as a scaffold protein required for the stability of carbonyl reductase type-4 (CBR4, beta-subunit of the KAR complex) and for its 3-ketoacyl-ACP reductase activity, thereby participating in mitochondrial fatty acid biosynthesis. Catalyzes the NAD-dependent conversion of (3R)-3-hydroxyacyl-CoA into 3-ketoacyl-CoA (3-oxoacyl-CoA) with no chain length preference; this enzymatic activity is not needed for the KAR function (PubMed:19571038, PubMed:25203508, PubMed:30508570).

Prefers (3R)-3-hydroxyacyl-CoA over (3S)-3-hydroxyacyl-CoA and displays enzymatic activity only in the presence of NAD+ (PubMed:19571038).

Cooperates with enoyl-CoA hydratase 1 in mitochondria, together they constitute an alternative route to the auxiliary enzyme pathways for the breakdown of Z-PUFA (cis polyunsaturated fatty acid) enoyl-esters (Probable) (PubMed:30508570).

NAD-dependent 17-beta-hydroxysteroid dehydrogenase with highest activity towards estradiol (17beta-estradiol or E2). Has very low activity towards testosterone and dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one). Primarily an oxidative enzyme, it can switch to a reductive mode determined in the appropriate physiologic milieu and catalyze the reduction of estrone (E1) to form biologically active 17beta-estradiol (PubMed:17978863).
Biological Process
Androgen metabolic process Source: Ensembl
Estrogen biosynthetic process Source: UniProtKB
Fatty acid biosynthetic process Source: UniProtKB
Protein heterotetramerization Source: UniProtKB
Cellular Location
Mitochondrion matrix

Anti-HSD17B8 antibodies

Loading...
Target: HSD17B8
Host: Mouse
Antibody Isotype: IgG
Specificity: Human, Mouse, Rat
Clone: G-4
Application*: WB, IP, IF, E
Target: HSD17B8
Host: Mouse
Antibody Isotype: IgG1, κ
Specificity: Human
Clone: CBFYH-2019
Application*: E, WB
Target: HSD17B8
Host: Mouse
Antibody Isotype: IgG1
Specificity: Human
Clone: CBFYH-2018
Application*: P
Target: HSD17B8
Host: Mouse
Antibody Isotype: IgG1
Specificity: Human, Dog
Clone: CBFYH-2017
Application*: WB, IH
Target: HSD17B8
Host: Mouse
Antibody Isotype: IgG1, κ
Specificity: Human
Clone: 4F1
Application*: WB, E
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
IFImmunofluorescence
IHImmunohistochemistry
IPImmunoprecipitation
WBWestern Blot
EELISA
MMicroarray
CIChromatin Immunoprecipitation
FFlow Cytometry
FNFunction Assay
IDImmunodiffusion
RRadioimmunoassay
TCTissue Culture
GSGel Supershift
NNeutralization
BBlocking
AActivation
IInhibition
DDepletion
ESELISpot
DBDot Blot
MCMass Cytometry/CyTOF
CTCytotoxicity
SStimulation
AGAgonist
APApoptosis
IMImmunomicroscopy
BABioassay
CSCostimulation
EMElectron Microscopy
IEImmunoelectrophoresis
PAPeptide Array
ICImmunocytochemistry
PEPeptide ELISA
MDMeDIP
SHIn situ hybridization
IAEnzyme Immunoassay
SEsandwich ELISA
PLProximity Ligation Assay
ECELISA(Cap)
EDELISA(Det)
BIBioimaging
IOImmunoassay
LFLateral Flow Immunoassay
LALuminex Assay
CImmunohistochemistry-Frozen Sections
PImmunohistologyp-Paraffin Sections
ISIntracellular Staining for Flow Cytometry
MSElectrophoretic Mobility Shift Assay
RIRNA Binding Protein Immunoprecipitation (RIP)
Go to
Compare