Sign in or Register   Sign in or Register
  |  

FMO3

Flavin-containing monooxygenases (FMO) are an important class of drug-metabolizing enzymes that catalyze the NADPH-dependent oxygenation of various nitrogen-,sulfur-, and phosphorous-containing xenobiotics such as therapeutic drugs, dietary compounds, pesticides, and other foreign compounds. The human FMO gene family is composed of 5 genes and multiple pseudogenes. FMO members have distinct developmental- and tissue-specific expression patterns. The expression of this FMO3 gene, the major FMO expressed in adult liver, can vary up to 20-fold between individuals. This inter-individual variation in FMO3 expression levels is likely to have significant effects on the rate at which xenobiotics are metabolised and, therefore, is of considerable interest to the pharmaceutical industry. This transmembrane protein localizes to the endoplasmic reticulum of many tissues. Alternative splicing of this gene results in multiple transcript variants encoding different isoforms. Mutations in this gene cause the disorder trimethylaminuria (TMAu) which is characterized by the accumulation and excretion of unmetabolized trimethylamine and a distinctive body odor. In healthy individuals, trimethylamine is primarily converted to the non odorous trimethylamine N-oxide.
Full Name
Flavin Containing Monooxygenase 3
Function
Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds (PubMed:10759686, PubMed:30381441).

Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite (PubMed:9776311).

TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thrombus formation (PubMed:29981269).
Cellular Location
Microsome membrane; Endoplasmic reticulum membrane
Involvement in disease
Trimethylaminuria (TMAU):
Inborn error of metabolism associated with an offensive body odor and caused by deficiency of FMO-mediated N-oxidation of amino-trimethylamine (TMA) derived from foodstuffs. Affected individuals excrete relatively large amounts of TMA in their urine, sweat, and breath, and exhibit a fishy body odor characteristic of the malodorous free amine.
Topology
Helical: 510-530

Anti-FMO3 antibodies

Loading...
Target: FMO3
Host: Rabbit
Antibody Isotype: IgG
Specificity: Human, Mouse, Rat
Clone: CBXF-1238
Application*: WB, F
Target: FMO3
Host: Mouse
Antibody Isotype: IgG1
Specificity: Human
Clone: 3H1
Application*: P, WB
Target: FMO3
Host: Rabbit
Antibody Isotype: IgG
Specificity: Human, Mouse, Rat
Clone: CBXF-1239
Application*: WB, P, IF
Target: FMO3
Host: Mouse
Antibody Isotype: IgG
Specificity: Human
Clone: CBXF-1758
Application*: WB, IP, IF, E
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
IFImmunofluorescence
IHImmunohistochemistry
IPImmunoprecipitation
WBWestern Blot
EELISA
MMicroarray
CIChromatin Immunoprecipitation
FFlow Cytometry
FNFunction Assay
IDImmunodiffusion
RRadioimmunoassay
TCTissue Culture
GSGel Supershift
NNeutralization
BBlocking
AActivation
IInhibition
DDepletion
ESELISpot
DBDot Blot
MCMass Cytometry/CyTOF
CTCytotoxicity
SStimulation
AGAgonist
APApoptosis
IMImmunomicroscopy
BABioassay
CSCostimulation
EMElectron Microscopy
IEImmunoelectrophoresis
PAPeptide Array
ICImmunocytochemistry
PEPeptide ELISA
MDMeDIP
SHIn situ hybridization
IAEnzyme Immunoassay
SEsandwich ELISA
PLProximity Ligation Assay
ECELISA(Cap)
EDELISA(Det)
BIBioimaging
IOImmunoassay
LFLateral Flow Immunoassay
LALuminex Assay
CImmunohistochemistry-Frozen Sections
PImmunohistologyp-Paraffin Sections
ISIntracellular Staining for Flow Cytometry
MSElectrophoretic Mobility Shift Assay
RIRNA Binding Protein Immunoprecipitation (RIP)
Go to
Compare