Sign in or Register   Sign in or Register
  |  

CHRNA7

The nicotinic acetylcholine receptors (nAChRs) are members of a superfamily of ligand-gated ion channels that mediate fast signal transmission at synapses. The nAChRs are thought to be hetero-pentamers composed of homologous subunits. The proposed structure for each subunit is a conserved N-terminal extracellular domain followed by three conserved transmembrane domains, a variable cytoplasmic loop, a fourth conserved transmembrane domain, and a short C-terminal extracellular region. The protein encoded by this gene forms a homo-oligomeric channel, displays marked permeability to calcium ions and is a major component of brain nicotinic receptors that are blocked by, and highly sensitive to, alpha-bungarotoxin. Once this receptor binds acetylcholine, it undergoes an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. This gene is located in a region identified as a major susceptibility locus for juvenile myoclonic epilepsy and a chromosomal location involved in the genetic transmission of schizophrenia. An evolutionarily recent partial duplication event in this region results in a hybrid containing sequence from this gene and a novel FAM7A gene. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2012]
Full Name
Cholinergic Receptor Nicotinic Alpha 7 Subunit
Function
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin.
Biological Process
Acetylcholine receptor signaling pathway Source: ARUK-UCL
Activation of MAPK activity Source: UniProtKB
Calcium ion transport Source: UniProtKB
Cellular calcium ion homeostasis Source: UniProtKB
Chemical synaptic transmission Source: GO_Central
Cognition Source: UniProtKB
Dendrite arborization Source: ARUK-UCL
Dendritic spine organization Source: ARUK-UCL
Ion transmembrane transport Source: ParkinsonsUK-UCL
Ion transport Source: UniProtKB
Learning or memory Source: ARUK-UCL
Memory Source: ARUK-UCL
Modulation of excitatory postsynaptic potential Source: ARUK-UCL
Negative regulation of amyloid-beta formation Source: ARUK-UCL
Negative regulation of tumor necrosis factor production Source: MGI
Nervous system process Source: GO_Central
Positive regulation of amyloid-beta formation Source: ARUK-UCL
Positive regulation of angiogenesis Source: UniProtKB
Positive regulation of cell population proliferation Source: UniProtKB
Positive regulation of CoA-transferase activity Source: ARUK-UCL
Positive regulation of ERK1 and ERK2 cascade Source: ARUK-UCL
Positive regulation of excitatory postsynaptic potential Source: ARUK-UCL
Positive regulation of long-term synaptic potentiation Source: ARUK-UCL
Positive regulation of protein metabolic process Source: ARUK-UCL
Positive regulation of protein phosphorylation Source: ARUK-UCL
Regulation of amyloid fibril formation Source: ARUK-UCL
Regulation of amyloid precursor protein catabolic process Source: ARUK-UCL
Regulation of membrane potential Source: GO_Central
Regulation of neuron death Source: ARUK-UCL
Response to acetylcholine Source: ARUK-UCL
Response to amyloid-beta Source: ARUK-UCL
Response to hypoxia Source: UniProtKB
Response to nicotine Source: UniProtKB
Sensory processing Source: ARUK-UCL
Short-term memory Source: ARUK-UCL
Signal transduction Source: UniProtKB
Synapse organization Source: ARUK-UCL
Synaptic transmission, cholinergic Source: GO_Central
Cellular Location
Postsynaptic cell membrane; Cell membrane. TMEM35A/NACHO promotes its trafficking to the cell membrane (PubMed:27789755). RIC3 promotes its trafficking to the cell membrane (By similarity).
Topology
Extracellular: 23-230
Helical: 231-255
Helical: 262-280
Helical: 296-317
Cytoplasmic: 318-469
Helical: 470-490
PTM
Glycosylations at Asn-46, Asn-90 and Asn-133 are essential for TMEM35A/NACHO-mediated proper subunit assembly and trafficking to the cell membrane.

Anti-CHRNA7 antibodies

Loading...
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG
Specificity: Human
Clone: CBLNC-159
Application*: WB, E, IC, C, P
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG2b
Specificity: Human
Clone: 34
Application*: ELISA, IHC, WB
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG2a
Specificity: Human
Clone: CF100
Application*: ELISA, WB
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG2b
Specificity: Human
Clone: 2H1G3
Application*: E, WB, IH
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG
Specificity: Human
Clone: 14i17
Application*: WB
Target: CHRNA7
Host: Rat
Antibody Isotype: IgG1
Specificity: Rat, Chicken, Human, Monkey
Clone: CBWJN-1068
Application*: WB, IP, P, F
Target: CHRNA7
Host: Mouse
Antibody Isotype: IgG1
Specificity: Human, Rat, Chicken
Clone: CBWJN-1067
Application*: IF, IH, IP, WB
For Research Use Only. Not For Clinical Use.
(P): Predicted
* Abbreviations
IFImmunofluorescence
IHImmunohistochemistry
IPImmunoprecipitation
WBWestern Blot
EELISA
MMicroarray
CIChromatin Immunoprecipitation
FFlow Cytometry
FNFunction Assay
IDImmunodiffusion
RRadioimmunoassay
TCTissue Culture
GSGel Supershift
NNeutralization
BBlocking
AActivation
IInhibition
DDepletion
ESELISpot
DBDot Blot
MCMass Cytometry/CyTOF
CTCytotoxicity
SStimulation
AGAgonist
APApoptosis
IMImmunomicroscopy
BABioassay
CSCostimulation
EMElectron Microscopy
IEImmunoelectrophoresis
PAPeptide Array
ICImmunocytochemistry
PEPeptide ELISA
MDMeDIP
SHIn situ hybridization
IAEnzyme Immunoassay
SEsandwich ELISA
PLProximity Ligation Assay
ECELISA(Cap)
EDELISA(Det)
BIBioimaging
IOImmunoassay
LFLateral Flow Immunoassay
LALuminex Assay
CImmunohistochemistry-Frozen Sections
PImmunohistologyp-Paraffin Sections
ISIntracellular Staining for Flow Cytometry
MSElectrophoretic Mobility Shift Assay
RIRNA Binding Protein Immunoprecipitation (RIP)
Go to
Compare